House Energy & Technology Committee Intro to VELCO

January 25, 2019

ABOUT VELCO

Mission, Vision & Values

Our mission

VELCO's mission is to serve as a trusted partner.

Our vision

VELCO's vision is to create a sustainable Vermont through our people, assets, relationships and operating model.

Our values

VELCO values people, safety, sustainability, creativity and great work.

To live our values we...

- Treat everyone with respect.
- Respond with urgency and care.
- Unconditionally support and empower one another.
- Share information.
- Think outside the box.

Transmission's Role in the Electric System

Quick facts about VELCO

- Founded in 1956 as Vermont corporation
- 148 employees; HQ in Rutland; office in Montpelier
- Builds, operates, maintains facilities owned by VT Transco LLC
 - 738 miles of transmission lines; 1,500 miles fiber; 14,000 acres of ROW; 55 substations, switching stations, terminal facilities
 - \$1.3B in assets; \$21.6M in annual property taxes
 - 52-mile high-voltage direct current line through Northeast Kingdom owned by Vermont Electric Transmission Company (VETCO)
- Ownership—17 distribution utilities, Vermont Low-Income Trust for Electricity or VLITE (public benefit corporation)
- Governance—13 member board: GMP(4), BED, VEC, VPPSA, Public Power (2), VLITE
 (3) and VELCO CEO
- For profit corporation structured to deliver cooperative benefits to Vermont
- Going into our sixth year in a row of flat budgeting

VELCO milestones

1956	VELCO formed-1 st buildout (224 miles)			
1968	NERC & NEPOOL established			
1969	2 nd buildout (215 miles)			
1972	Vermont Yankee online (600MW)			
1981	VELCO headquarters built			
1982	VETCO formed/Phase 1 construction			
1991	Fiber optic cable			
1996	OATT issued			
1997	ISO-NE created			
2003	Northeast US blackout			
2004	ISO-NE assumes system planning			
2006	VT Transco formed; first Long-Range Plan			
2006	NERC becomes US electric reliability			
	organization adopts mandatory,			
	enforceable standards			
2007	3 rd buildout starts (200 miles): NRP, LCP			
	and SLP; VSPC created			
2011	Sheffield Wind Project online			
2012	GMP merger; VELCO governance changes			
2013	1 st transmission project deferral			
2014				
2018	>300 MW of solar online; Coolidge Solar			
	interconnects			

VELCO asset growth 2000-2017

Vermont distribution utility owners of VELCO

Corporate structure

^{*}VLITE: Vermont Low Income Trust for Electricity, Inc.

^{**}VETCO single-purpose entity owning a 52-mile line in Northeast VT

13-member board of directors

REGULATORY AND STAKEHOLDER FRAMEWORKS

Transmission regulation at FERC

Dept of Energy (DOE) Federal energy policy & technology development

Federal Energy Regulatory Commission (FERC)

- Reviews and approves rates, terms and conditions of transmission service
- Oversees development and enforcement of mandatory standards to ensure reliability, security and market integrity
- Establishes and enforces policy with respect to transmission planning and cost allocation
- Reviews certain mergers and acquisitions and other corporate transactions

Reliability regulation at NERC

Federal Energy Regulatory
Commission (FERC)

Regulates interstate transmission of electricity

Dept of Energy (DOE) Federal energy policy & technology development

North American Electric Reliability Corporation (NERC)

Electric Reliability
Organization—ERO

Develops and enforces reliability standards

ISO-NE: planning markets operations

Federal Energy Regulatory Commission (FERC) **Dept of Energy** (DOE)

North American Electric
Reliability Corporation (NERC)
Electric Reliability Organization—ERO

Northeast Power
Coordinating Council (NPCC)
Regional Reliability Organization—RRO

Independent System
Operator
ISO-New England

Regional Transmission Organization—RTO

Oversees markets, planning and operation of NE electric bulk power grid

VELCO & VT DUs

Federal Energy Regulatory Commission (FERC)

Regulates interstate transmission of electricity

North American Electric

Reliability Corporation (NERC)
Electric Reliability Organization—ERO
Develops and enforces reliability standards

Northeast Power Coordinating Council (NPCC)

Regional Reliability Organization—RRO Establishes, monitors & enforces region-specific reliability requirements

Independent System Operator

ISO-New England | Regional Transmission Organization—RTO Oversees planning and operation of NE electric bulk power grid

Local Control Center: VELCO

Transmission Owner/Operator—TO/TOP
Operates VT grid under ISO/NE oversight

VT Distribution Utilities

BED, GMP, VEC, etc.
Coordinate with VELCO for bulk power
delivery & subtransmission
system planning

Dept of Energy (DOE)

Federal energy policy & technology development

VERMONT PUBLIC UTILITY COMMISSION JURISDICTION

- Certificates of Public Good (CPG) for utility operation
- Siting and design of transmission projects
- Condemnation of property required for projects
- Issuance of debt and equity
- Mergers, acquisitions and certain other corporate transactions

Electric industry regulation: state regulation

ISO-NE

NPCC

VELCO

VT Distribution Utilities

DOE

FERC

VELCO FINANCE

New England states load ratio share

VT Transco revenue requirement: regional vs. local

VT Transco earnings before tax

	Budget 2019
New England Open Access Transmission Tariff	88,500
1991 Vermont Transmission Agreement	41,100
Earnings before tax	(93,900)
Net Cost of Transmission	35,700

CURRENT ISSUES: EVOLUTION OF THE GRID

Vermont and region continue a shift to smaller, intermittent, and more distributed renewables

State policies drive renewable resource development

- Mostly large-scale wind and behind-the-meter solar
- Other, fast & flexible resources will be needed to balance intermittent resources' variable output
- New transmission needed to bring wind farms' energy from their remote locations to population centers

Distributed generation and the "hybrid" grid

- A significant portion of New England's future grid could be "behind-the-meter" (solar facilities on distribution system)
- That will change how much and when power is used by consumers

Source: ISO New England

Region relying more on natural gas; traditional generators are retiring

- Low natural gas prices
 - Gas is the most economic fuel for new, conventional resources
 - 80% of new capacity since 1997 runs on natural gas
 - Nearly 65% of all proposed new generation would use natural gas
 - Demand for natural gas is rising
 - Gas pipelines are constrained during high demand periods, particularly winter
 - Creates grid reliability concerns and price volatility
- Low prices are putting financial pressure on coal, oil and nuclear baseload generators; some are retiring

Source: ISO New England

Vermont now imports most of its power

Ties to Massachusetts

Туре		MW 2014	MW 2018
Fossil (fast start	Winter	188	188
units)	Summer	138	138
Hydro		152	152
Wind		123	151
Landfill gas		9	9
Biomass (wood)		72	72
Solar and other, e.g.	farm methane	~100 and growing	~325 and growing
Nuclear		625	0
TOTAL IN-STATE NA GENERATION	MEPLATE	1265	845

VT exported power 73% of 2014 hours
VT imported power 100% of 2017 hours
(80% >400 MWs)

Energy sources on Vermont's peak days

- 2017/2018 winter peak hour (12/29/17, 6 p.m.)
- Load was 1005.7 MW

- 2018 summer peak hour (7/2/18, 8 p.m.)
- Load was 1002.3 MW

Grid operations are becoming more complex

- 1. Renewables (PV, wind) are intermittent, smaller, less controlable
- 2. At sunset all VT PV essentially shuts down at once
- 3. Inverter-based generation—unlike rotating generation— does not contribute to fault current or add system inertia
 - Both must be generated from other sources
 - Until now smart inverters were not required—IEEE standard 1547 will mandate smart inverters
- 4. Much distributed generation not visible to transmission system operators
 - Challenges situational analysis and model precision
- 5. No cyber standards currently apply to inverter-based generators
- 6. Weather key to intermittent resources
 - Little PV generation after snowstorms
 - Generally reduced output in winter
- 7. Energy storage very promising but challenges remain
 - Ideal flexibility: can be electric demand (i.e., load) or supply; quick response; ease of siting
 - Costs declining—market size increasing rapidly (stationary and electric vehicle applications)
 - Advanced analytics key to realizing full value
 - Questions: Will it be scheduled? Who will control it? What is the business model?

Transmission and distribution used to look like this...

...the evolving grid looks more like this.

Regionally, ISO-NE focused on winter fuel security

- Plant retirements (oil, coal, nuclear)
 - State-sponsored RE initiatives
 - Low NG prices
- NE>50% natural gas plants; without firm gas delivery guarantees

**Hypothetical values assuming the loss of over 5,000 MW from generators identified as being at-risk of retirement due to plant age and infrequent operation

Sheffield-Highgate Export Interface (SHEI)

STRATEGIC INITIATIVES & CULTURAL TRANSFORMATION

VELCO strategic initiatives

Innovation workbench

Statewide infrastructure

- eEnergy VT smart grid
 - 92-94% smart meters
- Fiber optic network
- Radio system
- High-performance computing cluster—HPCC

Strategies to diversify revenue streams

Construction mat rentals to distribution utilities, avoiding need for them to purchase their own

Use of radio and fiber systems to meet Vermont utilities' needs

Contact Info

- John Flynn, VP for Strategy and Business Development
- Mark Sciarrotta, Communications Director and Assistant General Counsel
- Shana Louiselle, Communications and Policy Advocate

jflynn@velco.com

msciarrotta@velco.com

slouiselle@velco.com

